Connectedness of number theoretical tilings
نویسندگان
چکیده
We also study the connectedness of Pisot dual tilings which play an important role in the study of β-expansion, substitution and symbolic dynamical system. It is shown that each tile generated by a Pisot unit of degree 3 is arcwise connected. This is naturally expected since the digit set consists of consecutive integers as above. However surprisingly, we found families of disconnected Pisot dual tiles of degree 4. Also we give a simple necessary and sufficient condition for the connectedness of the Pisot dual tiles of degree 4. As a byproduct, a complete classification of the β-expansion of 1 for quartic Pisot units is given.
منابع مشابه
On the Connectedness of Clash-free Timetables
We investigate the connectedness of clash-free timetables with respect to the Kempe-exchange operation. This investigation is related to the connectedness of the search space of timetabling problem instances, which is a desirable property, for example for two-step algorithms using the Kempe-exchange during the optimization step. The theoretical framework for our investigations is based on the s...
متن کاملTilings and model theory
In this paper we emphasize the links between model theory and tilings. More precisely, after giving the definitions of what tilings are, we give a natural way to have an interpretation of the tiling rules in first order logics. This opens the way to map some model theoretical properties onto some properties of sets of tilings, or tilings themselves.
متن کاملDihedral f-tilings of the sphere by rhombi and triangles
An isometric folding is a non-expansive locally isometry that sends piecewise geodesic segments into piecewise geodesic segments of the same length. An isometric folding is a continuous map that need not to be differentiable. The points where it is not differentiable are called singular points. The foundations of isometric foldings of Riemannian manifolds are introduced by Robertson (1977). For...
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کاملFaultfree Tromino Tilings of Rectangles
In this paper we consider faultfree tromino tilings of rectangles and characterize rectangles that admit such tilings. We introduce the notion of crossing numbers for tilings and derive bounds on the crossing numbers of faultfree tilings. We develop an iterative scheme for generating faultfree tromino tilings for rectangles and derive the closed form expression for the exact number of faultfree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics & Theoretical Computer Science
دوره 7 شماره
صفحات -
تاریخ انتشار 2005